
EBOOK

The Definitive Guide
to Fine-Tuning LLMs
Insights for tackling the 4 biggest
challenges of fine-tuning

Introduction: The LLM Landscape and Rise of Fine-Tuning ... 3

Chapter 1: When to fine-tune? ... 5

Step 1: Choose your task .. 5

Step 2: Choose the best model for your task ... 6

Step 3: Choose the best approach to adapt your LLM .. 7

Chapter 2: Data Preparation .. 10

How much data do you need to fine-tune? ... 10

What structure should the data be in?... 11

How to fine-tune when you don’t have labeled data?.. 12

Chapter 3: Infrastructure Requirements ... 13

How much compute resources do you need for fine-tuning LLMs?.. 13

How much compute resources do you need for serving LLMs? .. 13

How to pick the best GPUs for your needs?... 14

Chapter 4: Fine-tuning Optimizations .. 15

How to perform efficient fine-tuning? .. 15

What are the most common fine-tuning parameters? .. 16

​​How to evaluate your fine-tuned model? ... 16

Conclusion: How to Get Started Fine-tuning and Serving Your Own LLM 19

Contents

2

Large language models (LLMs) are powerful deep neural networks that can understand and generate natural
language. They have revolutionized the field of natural language processing (NLP) and opened up new possibilities
for applications and services. Inflection points like the invention of transformers in 2017 or BERT in 2018
demonstrated the massive potential of LLMs, and the launch of ChatGPT at the end of 2022 took the world by storm
with its conversational skills. LLMs have ushered a wave of innovations powered by Generative AI and removed
significant barriers to entry in terms of data requirements and complexity of training models from scratch. There has
never been a better time to be in the field of machine learning and AI. But while every organization is thinking about
how to best leverage Generative AI for their needs, ML practitioners have to think about how to get there effectively.

So how do you balance the speed of innovation required, with the costs and resources needed to bring your model
all the way from prototyping to production? The reality is that costs associated with building an LLM from the ground
up are prohibitive for most organizations. Luckily, fine-tuning has emerged as a proven approach to improve the
accuracy of a pre-trained model while significantly reducing the computational costs and time required to train
an LLM from scratch. You can now start with a pre-trained LLM like Llama-2 and fine-tune to additional domain-
specific knowledge. For example, you can build high quality, tailored applications like code assistants and customer
support chatbots by fine-tuning them with your organization’s vernacular or company data. As shown in the chart
below, bigger isn’t always better. Smaller, faster fine-tuned open-source models can outperform larger more costly
commercial LLMs.

INTRODUCTION

The LLM Landscape and Rise of Fine-Tuning

Fine-tuned open-source models can outperform larger, more expensive commercial LLMs for specific tasks.

Model Accuracy for JSON Generation

Llama-2-70B

Zero Shot Zero Shot

Llama-2-7B Llama-2-70BGPT-4-1.7T

100%

75%

50%

25%

0%

94%

66%

93%

40% more accurate

250x smaller model

33%

3

In this eBook, we will cover how to overcome the four biggest challenges when fine-tuning your models:

 When to fine-tune your models
 How to prepare your data
 What infrastructure is required for training and serving
 How to optimize fine-tuning

By following these best practices, you will be able to fine-tune your LLMs effectively and efficiently, and unleash their
full potential for your organization.

4

CHAPTER 1

When to fine-tune?
Fine-tuning is the process of adapting a pre-trained LLM to a specific domain or task by updating its parameters with
a smaller amount of data. Instead of starting from scratch, fine-tuning can improve the performance and efficiency of
pre-trained LLMs for various applications. But how do you choose the best LLM and the best fine-tuning method for
your project?

Step 1: Choose your task.

The first step is to identify the type of task you want to perform with LLMs. What are you trying to achieve with your
NLP project? What’s your use case? What are the inputs and outputs of your system? What are the evaluation metrics
and desired outcomes?

In particular, one way to categorize NLP tasks is based on whether they are predictive or generative. Predictive
tasks are those that require the system to predict a label, a score, or a category for a given input. Generative tasks
are those that require the system to generate text for a given input.

In general, predictive tasks are easier to fine-tune than generative tasks, as they require less data and less
computation. However, generative tasks can benefit more from fine-tuning, as they can produce more diverse and
creative outputs that match the domain and task requirements.

Predictive Tasks Generative Tasks

Goal Predict a label, score, or category for
a given input

Generate text for a given input

Examples Sentiment analysis, spam detection, text
classification, information extraction, etc.

Text summarization, machine translation,
text generation, etc.

Pros Easier to fine-tune (requires less data
and computation)

More creative and diverse

Cons Constrained outputs Harder to fine-tune (requires more data
and computation)

Predictive vs Generative Tasks Checklist

5

Step 2: Choose the best model for your task.

The next step is to choose the best pre-trained model for your task. There are many high-performing open-
source LLMs available for fine-tuning, such as the Llama-2, Mistral/Mixtral, Phi-2, Zephyr, and more. These
models come in different sizes (e.g., Llama-2-7B vs. Llama-2-70B), each with its own strengths and weaknesses,
depending on its size, architecture, training data, and performance for the type of task you would like to
accomplish.

Below is a short description and table comparing different fine-tuned versions of the Llama-2 model to give you a
sense of how performance can vary:

 Code Llama (available with 7B, 13B and 34B parameters) is fine-tuned from Llama-2 for generating and
discussing code. It was further trained on code-specific datasets and can be used for code generation,
generating natural language about code, and debugging in many popular programming languages.

 Llama-2-Chat (available with 7B, 13B and 70B parameters) is a version of Llama-2 that has been fine-tuned
using supervised learning for prediction refinement to excel in conversational applications. It can use both
words before and after each word to get the meaning, and it can use some inputs and goals to make text
that fits them. Llama-2 can help with both predictive and generative tasks.

As a rule of thumb, to choose the best model for your task, you should consider two factors: compute
efficiency for training and serving, and data relevance, or how similar the data used to train the model is to your
specific domain or task, e.g. Llama-2-Chat for chat-specific applications and Code Llama for code generation.
For example, larger models may perform better for a broader set of tasks but come at a higher compute cost.
Fine-tuning a smaller model can often provide performance similar to a larger model but at a much lower cost.

Llama-2-7b-Chat Llama-2-70b-Chat CodeLlama-34b

Task Type General General Code generation

Sample Efficiency Low High Medium

Computational Efficiency High Low Medium

Flexibility High High Low

Training Data Multilingual Multilingual Code

Comparing Llama-2-7b-Chat vs Llama-2-70b-Chat vs CodeLlama-34b

6

Step 3: Choose the best approach to adapt your LLM.

The final step is to choose the best method for adapting the pre-trained model to your task and dataset. There are
three main methods for doing so: prompting, Retrieval Augmented Generation (RAG), and fine-tuning:

Prompting can be a good way to prototype and steer a model towards a desired behavior, by using words to tell an
LLM what to do without changing its parameters. Prompting uses the internal knowledge that is already learned by
the LLM from pre-training. While performance isn’t guaranteed and it may not work for all use-cases, prompting is
useful if you have minimal labeled data. However, keep in mind that getting to very strong results can take a lot of
time and therefore can be expensive.

 Prompting can be a good way to prototype and steer a model towards a desired behavior, by using words
to tell an LLM what to do without changing its parameters. Prompting uses the internal knowledge that is
already learned by the LLM from pre-training. While performance isn’t guaranteed and it may not work for all
use-cases, prompting is useful if you have minimal labeled data. However, keep in mind that getting to very
strong results can take a lot of time and therefore can be expensive.

 RAG combines an LLM with a retrieval system that can get information from an external vector store containing
your data. RAG makes the LLM generate better and more specific responses by getting additional relevant
information and using it as context while it generates a response–this method is useful when your task requires
external knowledge or context to generate a correct output. It may however introduce irrelevant or inaccurate
information if the retriever module is not well-designed.

prompt:
 task: “Classify the sample input as either negative, neutral, or positive.”

BASE LLM

Pre-training Response

Query

Response

Search

Query + relevant docs

Q/A SYSTEM

ORG/DOMAIN
SPECIFIC DATASET

USERGIGANTIC DATASET
(WEB, WIKI, BOOKS, ETC.)

7

 Fine-tuning adapts a pre-trained LLM to a specific domain or task by updating its parameters with a smaller
amount of data, aiming to enhance performance and efficiency–this method is useful to achieve the best
performance when you have a small and properly formatted task-specific dataset that is similar to or overlaps
with the training data of the pre-trained model. However, it may cause overfitting or catastrophic forgetting if
not done carefully.

The choice of method depends on several factors, such as the availability and quality of your data, the similarity and
complexity of your task, the trade-off between accuracy and efficiency, etc. You should compare different methods
based on their advantages and disadvantages and choose the one that best fits your situation. Also note that these
methods are not mutually exclusive. Predibase offers guidance on fine-tuning LLMs like LLaMa-2 with scalable LLM
infrastructure, which can complement Prompting and RAG techniques.

In the next chapter, we will discuss how to prepare your data for fine-tuning.

Prompting RAG Fine-tuning

Data Requirement Low High Medium

Computation Requirement Low Medium High

Parameter Update N/A N/A Yes

Task Adaptation Medium High High

Knowledge Incorporation Low High High

Comparing methods to adapt a LLM to a chosen task(s)

BASE LLM

Pre-training Fine-tuning

Query

Response

FINE-TUNED LLM

ORG/DOMAIN
SPECIFIC DATASET

USERGIGANTIC DATASET
(WEB, WIKI, BOOKS, ETC.)

8

https://predibase.com/blog/how-to-fine-tune-llama-2-on-your-data-with-scalable-llm-infrastructure

Did you know?

Different types of fine-tuning can be used to adapt an LLM to
a specific domain or task: instruction tuning, domain adaptation,
and task adaptation.

Instruction tuning is used when you need very precise control over your LLM. For example, if you need
your LLM to write in a very specific way, and generate specific types of content or responses. It uses
explicit and structured instructions within the fine-tuning dataset to guide the LLM’s behavior to perform
a specific task. With this method, you can exploit the natural language understanding and generation
capabilities of the LLM without changing its architecture or training objective.

Domain adaptation is used when you need the model to develop expertise in a specific field, like
learning domain-specific vocabulary, style, and knowledge, so it can for example understand for example
legal documents or medical records. It adapts the LLM towards a specific domain by updating its
parameters with a smaller amount of domain-specific data.

Task adaptation is used to adapt an existing well-performing LLM to a specific task by adding a task-
specific layer on top of it and updating all its parameters with a smaller amount of task-specific data.
Task adaptation aims to learn task-specific objectives and constraints that can improve the performance
and efficiency of the LLM.

9

CHAPTER 2

Data Preparation
One of the most important steps in fine-tuning LLMs is data preparation. The quality and quantity of your data can
have a significant impact on the performance of your fine-tuned model. So how much data do you need to fine-tune
your model effectively? What structure should your data be in? And finally, how to go about it when you don’t have
enough training data?

How much data do you need to fine-tune?

The answer to this question depends on several factors, such as the size and complexity of the LLM, the task and
domain you are fine-tuning for, and the level of customization you want to achieve. In general, the more data you
have, the better your fine-tuned model will be. However, there are diminishing returns after a certain point, and
having too much data can also introduce noise and inefficiency.

As a rule of thumb, you should aim to have at 2,000 to 5,000 examples for each task or domain you want to fine-
tune for. This is based on real-life use cases that show that LLMs can achieve good results with smaller amounts of
curated data. This is also supported by Meta’s LIMA paper, where they demonstrate that 1,000 examples may be
enough when fine-tuning with larger models. However, this is not a hard limit, and you may need more or less data
depending on your specific use case.

Some factors that can affect the amount of data you need are:

 Size and complexity of the LLM: Larger and more complex LLMs tend to have more parameters,
while often requiring less fine-tuning for generating coherent text across various domains — like
Llama 2 (70 billion parameters) compared to smaller LLMs like BERT (110 million parameters).

 Task and domain: The complexity and diversity of the task and domain being fine-tuned can
impact the amount of data needed. Simpler or broader tasks may require less data — such as
sentiment analysis compared to natural language inference.

 Level of customization: Customization level can impact data requirements. A broad range of more
general tasks and domains need less data compared to a specialized task or domain excellence,
like generating generic text summaries versus personalized product reviews.

10

https://arxiv.org/pdf/2305.11206.pdf

What structure should the data be in?

Generally speaking, your data should be in the form of (input, output) pairs for fine-tuning jobs. Depending on the
type of task, these pairs will be structured differently:

 For predictive tasks like classification, regression, question answering, etc. your input is the text or
context that the LLM has to process, and the output is the label or answer that the LLM has to predict
based on the provided input.

 For tasks such as generation, summarization, translation, etc. your input is the text or context that the
LLM has to use as a source or reference, and the output is the text that the LLM has to generate as a
target response.

For example, if you want to fine-tune an LLM for sentiment analysis (a predictive task), your data should look
something like this:

If you want to fine-tune an LLM for text summarization (a generative task), your data should look something like this:

With an input/output structure like this, you could fine-tune the model using a prompt such as:

Input Output

I love this movie! Positive

This book is boring. Negative

The food was okay. Neutral

Input Output

The COVID-19 pandemic has caused unprecedented challenges and disruptions
for the global economy and society. The World Health Organization (WHO) has
declared it a public health emergency of international concern, and governments
around the world have implemented various measures to contain the spread of the
virus and mitigate its impacts. However, the pandemic is not only a health crisis,
but also a social, economic, and environmental one. It has exposed and exacerbated
the existing inequalities and vulnerabilities of different groups and regions, and
posed serious threats to human rights, democracy, and sustainable development.

The COVID-19 pandemic
is a multifaceted crisis that
affects all aspects of life and
requires coordinated and
comprehensive responses
from all stakeholders.

Prompt

Summarize the following article in one sentence: {Input}

11

How to fine-tune when you don’t have labeled data?

Labeled data is data that has been annotated or tagged with the desired output or information, such as sentiment
labels, summaries, translations, etc. Labeled data is essential for supervised learning, which is the most common
method of fine-tuning LLMs.

However, labeled data can be scarce, expensive, or unavailable for some tasks or domains. In such cases, you may
have to augment your labeled dataset, or even generate a dataset from scratch using other creative methods of data
generation, such as:

 Synthetic data generation: You can use a larger LLM to generate synthetic data for your task or
domain. For example, you can leverage Llama-2-70B or GPT-4 to make fake movie reviews with different
sentiments, and use them as labeled data. However, leveraging synthetic data may come with some
trade-offs including quality, diversity, biases or errors.

 Data flywheel in product: One way to fine-tune a LLM is to create a data flywheel that collects and
labels real data from your users or customers. For example, you can let your users ask questions and
rate the answers from your LLM, and use this feedback as labeled data. However, user-generated data
may have some challenges, such as noise, spam, privacy, and user engagement.

In the next chapter, we will discuss infrastructure requirements for fine-tuning and serving your LLMs.​

Check out our Model Distillation playbook to learn best practices
for generating synthetic data from larger LLMs.

12

https://github.com/predibase/llm_distillation_playbook

CHAPTER 3

Infrastructure Requirements
Fine-tuning a large language model (LLM) requires a lot of computational resources, GPU memory, and storage.
Depending on the size of the model, the dataset, and your objective, you may need different types of infrastructure
to train and serve your fine-tuned model.

How much compute do you need for fine-tuning LLMs?

Fine-tuning an LLM on your custom dataset involves updating the weights of the pre-trained model using a
gradient-based optimization algorithm. This training process can be very time-consuming and resource-intensive,
depending on the size of the model and the dataset.

To train an LLM effectively, you need enough CPU, RAM, and GPU memory to handle the large amount of data and
parameters involved in fine-tuning. For example, Llama-2-7B has 7 billion parameters and requires 66 GB of GPU
memory to load. Additionally, you may need a distributed system to parallelize the training process and speed it up.

How much compute do you need for serving LLMs?

The second step in fine-tuning an LLM is to serve it for inference in production. This involves loading the fine-tuned
model into GPU memory and processing user requests or queries using the model. The serving process can also be
very demanding and challenging, depending on the scale and complexity of your application.

To serve an LLM efficiently, you will also need enough CPU, RAM, and GPU memory to handle the large size of
the model and the high volume of requests or queries. For example, Llama-2-70B requires 140 GB of GPU memory
per inference. You also need a fast network connection to transfer data between your server and your client or
user interface.

13

How to pick the best GPUs for your needs?

One of the most critical factors in fine-tuning and serving LLMs is the availability and selection of GPUs.
GPUs can perform parallel computations faster than CPUs. They are essential for accelerating the training and
inference of LLMs.

However, GPUs are also expensive and scarce resources. They can cost thousands of dollars per device or
hundreds of dollars per hour on cloud platforms. They can also be in high demand by other users or applications
that require GPU power.

Therefore, you need to optimize the use of GPUs for fine-tuning and serving LLMs. You need to consider the
following aspects when choosing and using GPUs:

 GPU type: Different types of GPUs have different features and performance for different tasks.
For example, the NVIDIA A100 is a high-end expensive GPU with 80GB of GPU memory, specifically
designed for deep learning. Alternatively, Nvidia Tesla T4 is a more affordable GPU with 16G of GPU
memory. It is suitable for mainstream applications and serving LLMs with low latency and high throughput.

 GPU number: The number of GPUs you need depends on the size of the model, the size of the dataset,
the speed of the training or inference, and the budget of the project. For example, for fine-tuning Llama-2
on a large dataset in a short time, you may need tens or hundreds of GPUs to parallelize the training
process. On the other hand, for serving Llama-2 for a large-scale application with high traffic, you may
need thousands of GPUs to handle the requests or queries.

 GPU utilization: The utilization of a GPU is the percentage of time that the GPU is busy performing
computations. A high utilization means that the GPU is fully utilized and not wasted. A low utilization means
that the GPU is underutilized and idle. To increase the utilization of your GPUs, you can use techniques
such as quantization, or adapters.

14

CHAPTER 4

Fine-tuning Optimizations
Fine-tuning LLMs is not easy and it can be expensive. It requires a lot of computational resources, time, and
expertise. To optimize the fine-tuning process, you can also leverage sizing and optimization best practices.

How to perform efficient fine-tuning?

The model size affects the fine-tuning speed and cost. Bigger models are slower and more expensive, but may
perform better. Smaller models are faster and cheaper, but may perform slightly worse. You need to balance size
and quality when choosing a model. Start with a small model that fits your data and task, and scale up if needed.

Quantization and adapters are two techniques that can help reduce the memory and computational cost of
fine-tuning large language models (LLMs) while improving their performance:

 Quantization is the process of reducing the number of bits used to represent each parameter in a model.
For example, use 8-bit or 4-bit numbers instead of 32-bit floating point numbers. This can save memory
and make LLMs faster, especially on devices with low resources. But quantization can also lose some
accuracy or precision, so you need to find a balance between bits and quality.

 Adapters are small modules that are added to a pre-trained large language model (LLM) and fine-tuned
for a specific task or domain. They allow the LLM to adapt to new scenarios without changing its original
parameters. This can preserve the general knowledge of the LLM and avoid catastrophic forgetting, which
is the problem of losing previous capabilities when fine-tuning for a new task. Adapters can also reduce
the number of parameters that need to be updated during fine-tuning to a small fraction, which can save
time and compute required (with less than 0.5% additional trainable parameters, the training overhead can
be reduced up to 70%, compared to full fine-tuning). Some common adapter techniques include Low Rank
Adaptations (LoRA) and Adaptive Low Rank Adaptations (AdaLoRA).

QLoRA (Quantized Low Rank Adapters) is an efficient fine-tuning approach for LLMs that combines quantization
and adapters. As a result, it can significantly reduce memory usage while maintaining the performance of full
16-bit fine-tuning. It achieves this by back propagating gradients through a frozen, 4-bit quantized pre-trained
LLM into the LoRA adapter weights, which are the only weights that are updated during training. This results in
tuning the LoRA adapter weights for your task while leaving the base model weights untouched.

15

What are the most common fine-tuning parameters?

Epoch and learning rates are the most common fine-tuning parameters for deep neural networks, and it’s important
to find how to best adjust these parameters to improve your model accuracy while avoiding overfitting:

 Epoch: An epoch is a complete pass over the entire dataset during training. The number of epochs
affects the model’s accuracy and convergence. Too few epochs may result in underfitting, where the
model does not learn enough from the data. Too many epochs may result in overfitting, where the
model memorizes the data and loses generalization. A good practice is to use early stopping, where
the training is stopped when the validation loss stops decreasing or starts increasing. Typically, large
language models do well with 3 to 5 epochs of fine-tuning on larger datasets, and up to 10 epochs of
fine-tuning on small datasets.

 Learning rate: The learning rate is a hyperparameter that controls how much the model’s weights
are updated by during each iteration of training. The learning rate affects the speed and stability of
fine-tuning. A learning rate too high may cause the model to diverge or oscillate around the optimal
solution. A low learning rate may cause the model to converge too slowly or get stuck in a local
minimum. A good practice is to use a learning rate scheduler, where the learning rate is adjusted
dynamically based on the progress of training, often combining some warm up steps to help stabilize
gradients during the early part of training and then using some learning rate decay to slowly decrease
the learning rate over time to prevent the model from overshooting the global minima.

​​How to evaluate your fine-tuned model?

Effective evaluation of AI models requires clearly defined criteria that align with your specific application’s needs.
The choice of evaluation metrics should reflect the nature of the problem and the desired outcomes of the model.

Automatic metric-based evaluation:

 Target text metrics. These include algorithm-based metrics such as word error rate, bleu score,
token accuracy, perplexity, or neural-based such as BLEURT.

 Custom metrics. Domain-specific tasks that may require creating your own metric. For instance,
evaluating models that generate JSON might focus on checking for schema adherence, extraction tasks
might focus on slot accuracy or recall, and code generation models might focus on code compilation.

16

 Published test suites. Test suites are collections of test cases that are designed to evaluate a
model’s performance on specific aspects or challenges of the task or domain that may consist of a
mix of target text metrics and custom metrics. For example, MMLU is a multitask metric that covers
elementary math, US history, computer science, law and more. TruthfulQA measures a model’s
propensity to reproduce falsehoods commonly found online. Test suites can provide objective and
consistent feedback on the model’s strengths and weaknesses. For more domain-specific tasks, it
may require creating your own metric or criteria for these tests, and these should be structured based
on the business metrics that are relevant.

For a more extensive list of popular automatic metrics, refer to this resource from Hugging Face.

Manual evaluation:

 Human ratings. The most reliable way to measure the quality and relevance of the model’s outputs.
This involves asking human experts or users to score outputs based on some criteria (e.g., fluency,
coherence, accuracy, etc.) This is likely the most costly and time-consuming option. Human ratings may
also be subjective, and require specific training to attain rating consistency.

 Elo rankings. Human ratings in a pairwise contest setting. Elo rankings compare different models based on
their relative performance in pairwise contests. For example, given two models that generate captions for
an image, an evaluator can choose which one is better or if they are equal. The Elo score of each model
is then updated based on the outcome of the contest. Elo rankings can provide a global and comparative
measure of the model’s quality and ranking across a set of fine-tuned model candidates. One can also use
an additional model like GPT-3.5 as a discriminator to choose whether it prefers the output of model A
or model B, making this a bit more of an automated process at the cost of it being less aligned to human
preference.

 LLMs as judges. There’s a growing trend of using LLMs themselves to assess model outputs qualitatively,
especially in scenarios where traditional metrics might fall short or where manual evaluation by human
raters is too expensive. This approach can be compelling but requires careful consideration to account for
potential LLM biases.

17

https://huggingface.co/evaluate-metric

Another framework for evaluating models is Error Analysis which involves the following steps:

 Understand base model behavior before fine-tuning: Before fine-tuning a model, try to understand
how the pre-trained model behaves on the target task or domain. This can help identify the gaps and
opportunities for improvement that fine-tuning can address.

 Categorize errors so you can iterate on data to fix these problems in data space: After fine-tuning a
model, analyze and categorize the errors that the model makes on the test or validation data. This can
help identify the root causes and patterns of the errors and suggest possible solutions or interventions.
For example, some common error categories are misspelling, too verbose, repetitive outputs, etc.

 Go after the most catastrophic errors first: These are the errors that can harm the credibility,
trustworthiness, or usability of the model and its outputs (e.g., misleading statements, offensive or
inappropriate language, sensitive or personal information leakage, etc.).

As one looks to address errors and other LLM quality issues, consider relying on augmenting the LLM with
rules-based systems to, for example, filter out bad training data, fix outputs in post-processing, or add guardrails
to ensure output conformity and compliance.

18

The Developer Platform for Open-Source AI

Your data, your models,
your property

Powerful tools designed
for developers

World class infra without
any of the work

CONCLUSION

How to Get Started Fine-tuning and
Serving Your Own LLM
In this eBook, we covered some of the biggest challenges of fine-tuning LLMs. However you are not alone.
Predibase is designed to solve these challenges so that you can accelerate time to market and abstract away a lot
of the complexity that comes with fine-tuning and serving your own custom LLMs in these ways:

 Accelerating fine-tuning using Ludwig, an open-source project that lets you define model training through
configurations, instead of writing code. This greatly reduces fine-tuning complexity and makes it easy to try
different fine-tuning strategies, prompts, and tasks.

Make sure to check out this on-demand session with DeepLearning.AI
that covers efficient fine-tuning with Ludwig.

19

https://ludwig.ai/
https://www.youtube.com/watch?v=g68qlo9Izf0

Get started fine-tuning and serving LLMs
like Zephyr, Llama-2, Mistral, and more
for free with our free trial.

 Managing prompt template iterations, which can affect the model’s performance. For example, when
fine-tuning LLMs that were previously instruction-tuned like LLaMA-2-Chat, training is more effective
when using the same prompt template as the LLM was trained with. Predibase separates the prompt
template, data string, and task, so users can change each one easily without rewriting code or data.

 Automatically right-sizing compute resources, so the fine-tuning task is reliable and just works.
This saves you from setting up their own infrastructure, dealing with distributed training, and solving
memory issues.

 Enabling distributed training out-of-the-box, using Deepspeed configuration for model sharding,
half-precision training, offloading parameters and optimizer states, and more. This makes the training
process reliable, scalable, and cost-effective, without requiring you to configure these parameters.

 Optimizing serving infrastructure for many fine-tuned models with LoRAX, an open-source
framework that lets you serve hundreds of fine-tuned LLMs from a single GPU with minimal degradation
to throughput and capacity while unlocking 100x inference cost savings.

T RY P R E D I B A S E

https://predibase.com/free-trial
https://predibase.com/blog/lora-exchange-lorax-serve-100s-of-fine-tuned-llms-for-the-cost-of-one
https://predibase.com/free-trial

